Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Rev Invest Clin ; 73(3): 190-198, 2021.
Article in English | MEDLINE | ID: covidwho-1239310

ABSTRACT

BACKGROUND: There is no pharmacological intervention on the treatment of hypoxemia and respiratory distress in COVID-19 patients. OBJECTIVE: The objective of the study was to study the effect of the reduced form of methylene blue (MB) on the improvement of oxygen saturation (SpO2) and respiratory rate (RR). METHODS: In an academic medical center, 80 hospitalized patients with severe COVID-19 were randomly assigned to receive either oral MB along with standard of care (SOC) (MB group, n = 40) or SOC only (SOC group, n=40). The primary outcomes were SpO2 and RR on the 3rd and 5th days. The secondary outcomes were hospital stay and mortality within 28 days. RESULTS: In the MB group, a significant improvement in SpO2 and RR was observed on the 3rd day (for both, p < 0.0001) and also the 5th day (for both, p < 0.0001). In the SOC group, there was no significant improvement in SpO2 (p = 0.24) and RR (p = 0.20) on the 3rd day, although there was a significant improvement of SpO2 (p = 0.002) and RR (p = 0.01) on the 5th day. In the MB group in comparison to the SOC group, the rate ratio of increased SpO2 was 13.5 and 2.1 times on the 3rd and 5th days, respectively. In the MB group compared with the SOC group, the rate ratio of RR improvement was 10.1 and 3.7 times on the 3rd and 5th days, respectively. The hospital stay was significantly shortened in the MB group (p = 0.004), and the mortality was 12.5% and 22.5% in the MB and SOC groups, respectively. CONCLUSIONS: The addition of MB to the treatment protocols significantly improved SpO2 and respiratory distress in COVID-19 patients, which resulted in decreased hospital stay and mortality. ClinicalTrials.gov: NCT04370288.


Subject(s)
COVID-19 Drug Treatment , Methylene Blue/therapeutic use , Adult , Aged , Female , Hospitalization , Humans , Male , Middle Aged
3.
Am J Emerg Med ; 40: 11-14, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-956858

ABSTRACT

OBJECTIVE: Coronavirus disease 19 (COVID-19) caused by the highly pathogenic SARS-CoV-2, was first reported from Wuhan, China, in December 2019. The present study assessed possible associations between one-month mortality and demographic data, SpO2, underlying diseases and laboratory findings, in COVID-19 patients. Also, since recent studies on COVID-19, have focused on Neutrophil-to-lymphocyte ratio (NLR) as an independent risk factor of the in-hospital death and a significant prognostic biomarker of outcomes in critically ill patients, in this study, we assessed predictive potential of this factor in terms of one-month mortality. METHODS: Patients admitted to Imam Reza hospital, affiliated to Mashhad University of Medical Sciences, Mashhad, Iran, from March to June 2020, with positive RT-PCR results for SARS-CoV-2, were included in this study. Kaplan-Meier survival analysis and Cox proportional hazard model were used to respectively estimate one-month mortality since admission and determine factors associated with one-month mortality. RESULTS: In this retrospective cohort study, 219 patients were included (137 men and 82 women (mean age 58.2 ± 16 and 57 ± 17.3 years old, respectively)). Hypertension, ischemic heart disease and diabetes were respectively the most common comorbidities. Among these patients, 63 patients were admitted to the ICU and 31 deaths occurred during one-month follow-up. With respect to mean peripheral capillary oxygen saturation (SpO2), 142 patients had SpO2 ≤ 90%. Based on our analysis, older age and increased Neutrophil-to-lymphocyte ratio (NLR), and White blood cells (WBC) count were associated with increased risk of one-month mortality. Patients with SpO2 ≤ 90% had a 3.8-fold increase in risk of one-month death compared to those with SpO2 > 90%, although the difference did not reach a significant level. CONCLUSION: Multivariate analysis introduced age, WBC count, and NLR as predictors of one-month mortality in COVID-19 patients.


Subject(s)
COVID-19/blood , COVID-19/mortality , Leukocytes , Lymphocytes , Neutrophils , Adult , Age Factors , Aged , Cohort Studies , Female , Humans , Leukocyte Count , Lymphocyte Count , Male , Middle Aged , Retrospective Studies , Risk Factors
4.
J Stroke Cerebrovasc Dis ; 29(12): 105321, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-872317

ABSTRACT

BACKGROUND: The emergence of the COVID-19 pandemic has significantly impacted global healthcare systems and this may affect stroke care and outcomes. This study examines the changes in stroke epidemiology and care during the COVID-19 pandemic in Zanjan Province, Iran. METHODS: This study is part of the CASCADE international initiative. From February 18, 2019, to July 18, 2020, we followed ischemic and hemorrhagic stroke hospitalization rates and outcomes in Valiasr Hospital, Zanjan, Iran. We used a Bayesian hierarchical model and an interrupted time series analysis (ITS) to identify changes in stroke hospitalization rate, baseline stroke severity [measured by the National Institutes of Health Stroke Scale (NIHSS)], disability [measured by the modified Rankin Scale (mRS)], presentation time (last seen normal to hospital presentation), thrombolytic therapy rate, median door-to-needle time, length of hospital stay, and in-hospital mortality. We compared in-hospital mortality between study periods using Cox-regression model. RESULTS: During the study period, 1,026 stroke patients were hospitalized. Stroke hospitalization rates per 100,000 population decreased from 68.09 before the pandemic to 44.50 during the pandemic, with a significant decline in both Bayesian [Beta: -1.034; Standard Error (SE): 0.22, 95% CrI: -1.48, -0.59] and ITS analysis (estimate: -1.03, SE = 0.24, p < 0.0001). Furthermore, we observed lower admission rates for patients with mild (NIHSS < 5) ischemic stroke (p < 0.0001). Although, the presentation time and door-to-needle time did not change during the pandemic, a lower proportion of patients received thrombolysis (-10.1%; p = 0.004). We did not see significant changes in admission rate to the stroke unit and in-hospital mortality rate; however, disability at discharge increased (p < 0.0001). CONCLUSION: In Zanjan, Iran, the COVID-19 pandemic has significantly impacted stroke outcomes and altered the delivery of stroke care. Observed lower admission rates for milder stroke may possibly be due to fear of exposure related to COVID-19. The decrease in patients treated with thrombolysis and the increased disability at discharge may indicate changes in the delivery of stroke care and increased pressure on existing stroke acute and subacute services. The results of this research will contribute to a similar analysis of the larger CASCADE dataset in order to confirm findings at a global scale and improve measures to ensure the best quality of care for stroke patients during the COVID-19 pandemic.


Subject(s)
Brain Ischemia/therapy , COVID-19 , Hospitalization/trends , Intracranial Hemorrhages/therapy , Outcome and Process Assessment, Health Care/trends , Stroke/therapy , Thrombolytic Therapy/trends , Time-to-Treatment/trends , Aged , Aged, 80 and over , Bayes Theorem , Brain Ischemia/diagnosis , Brain Ischemia/mortality , COVID-19/epidemiology , Female , Hospital Mortality/trends , Humans , Interrupted Time Series Analysis , Intracranial Hemorrhages/diagnosis , Intracranial Hemorrhages/mortality , Iran/epidemiology , Length of Stay/trends , Male , Middle Aged , Recovery of Function , Stroke/diagnosis , Stroke/mortality , Time Factors , Treatment Outcome
5.
J Neurol Sci ; 416: 117013, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-629733

ABSTRACT

INTRODUCTION: Current evidence on the association between COVID-19 and dementia is sparse. This study aims to investigate the associations between COVID-19 caseload and the burden of dementia. METHODS: We gathered data regarding burden of dementia (disability-adjusted life years [DALYs] per 100,000), life expectancy, and healthy life expectancy (HALE) from the Global Burden of Disease (GBD) 2017 study. We obtained COVID-19 data from Our World in Data database. We analyzed the association of COVID-19 cases and deaths with the burden of dementia using Spearman's rank correlation coefficient. RESULTS: Globally, we found significant positive (p < .001) correlations between life expectancy (r = 0.60), HALE (r = 0.58), and dementia DALYs (r = 0.46) with COVID-19 caseloads. Likewise, we found similar correlations between life expectancy (r = 0.60), HALE (r = 0.58) and dementia DALYs (r = 0.54) with COVID-19 mortality. CONCLUSION: Health policymakers should clarify a targeted model of disease surveillance in order to reduce the dual burden of dementia and COVID-19.


Subject(s)
COVID-19/epidemiology , Dementia/epidemiology , Age Distribution , Cause of Death , Comorbidity , Databases, Factual , Global Burden of Disease , Humans , Pandemics
6.
J Stroke Cerebrovasc Dis ; 29(9): 105089, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-614222

ABSTRACT

BACKGROUND: The interaction between coronavirus disease 2019 (COVID-19) and non-communicable diseases may increase the global burden of disease. We assessed the association of COVID-19 with ageing and non-communicable diseases. METHODS: We extracted data regarding non-communicable disease, particularly cardiovascular disease, deaths, disability-adjusted life years (DALYs), and healthy life expectancy (HALE) from the Global Burden of Disease Study (GBD) 2017. We obtained data of confirmed COVID-19 cases, deaths, and tests from the Our World in Data database as of May 28, 2020. Potential confounders of pandemic outcomes analyzed include institutional lockdown delay, hemispheric geographical location, and number of tourists. We compared all countries according to GBD classification and World Bank income level. We assessed the correlation between independent variables associated with COVID-19 caseload and mortality using Spearman's rank correlation and adjusted mixed model analysis. FINDINGS: High-income had the highest, and the Southeast Asia, East Asia, and Oceania region had the least cases per million population (3050.60 vs. 63.86). Sub-saharan region has reported the lowest number of COVID-19 mortality (1.9). Median delay to lockdown initiation varied from one day following the first case in Latin America and Caribbean region, to 34 days in Southeast Asia, East Asia, and Oceania. Globally, non-communicable disease DALYs were correlated with COVID-19 cases (r = 0.32, p<0.001) and deaths (r = 0.37, p<0.001). HALE correlated with COVID-19 cases (r = 0.63, p<0.001) and deaths (r = 0.61, p<0.001). HALE was independently associated with COVID-19 case rate and the number of tourists was associated with COVID-19 mortality in the adjusted model. INTERPRETATION: Preventive measures against COVID-19 should protect the public from the dual burden of communicable and non-communicable diseases, particularly in the elderly. In addition to active COVID-19 surveillance, policymakers should utilize this evidence as a guide for prevention and coordination of health services. This model is timely, as many countries have begun to reduce social isolation.


Subject(s)
Coronavirus Infections/epidemiology , Global Health , Noncommunicable Diseases/epidemiology , Pneumonia, Viral/epidemiology , Age Factors , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , Cause of Death , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cost of Illness , Databases, Factual , Female , Health Services Needs and Demand , Health Status Disparities , Healthcare Disparities , Host-Pathogen Interactions , Humans , Incidence , Infection Control , Male , Middle Aged , Needs Assessment , Noncommunicable Diseases/mortality , Noncommunicable Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Prognosis , Risk Factors , SARS-CoV-2 , Time Factors
7.
J Stroke Cerebrovasc Dis ; 29(9): 104938, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-210006

ABSTRACT

BACKGROUND AND PURPOSE: The novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), now named coronavirus disease 2019 (COVID-19), may change the risk of stroke through an enhanced systemic inflammatory response, hypercoagulable state, and endothelial damage in the cerebrovascular system. Moreover, due to the current pandemic, some countries have prioritized health resources towards COVID-19 management, making it more challenging to appropriately care for other potentially disabling and fatal diseases such as stroke. The aim of this study is to identify and describe changes in stroke epidemiological trends before, during, and after the COVID-19 pandemic. METHODS: This is an international, multicenter, hospital-based study on stroke incidence and outcomes during the COVID-19 pandemic. We will describe patterns in stroke management, stroke hospitalization rate, and stroke severity, subtype (ischemic/hemorrhagic), and outcomes (including in-hospital mortality) in 2020 during COVID-19 pandemic, comparing them with the corresponding data from 2018 and 2019, and subsequently 2021. We will also use an interrupted time series (ITS) analysis to assess the change in stroke hospitalization rates before, during, and after COVID-19, in each participating center. CONCLUSION: The proposed study will potentially enable us to better understand the changes in stroke care protocols, differential hospitalization rate, and severity of stroke, as it pertains to the COVID-19 pandemic. Ultimately, this will help guide clinical-based policies surrounding COVID-19 and other similar global pandemics to ensure that management of cerebrovascular comorbidity is appropriately prioritized during the global crisis. It will also guide public health guidelines for at-risk populations to reduce risks of complications from such comorbidities.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Hospitalization/trends , Pneumonia, Viral/epidemiology , Practice Patterns, Physicians'/trends , Stroke/epidemiology , Stroke/therapy , COVID-19 , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/virology , Healthcare Disparities/trends , Hospital Mortality/trends , Host-Pathogen Interactions , Humans , Incidence , Interrupted Time Series Analysis , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Prospective Studies , Registries , Retrospective Studies , Risk Factors , SARS-CoV-2 , Stroke/diagnosis , Stroke/mortality , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL